skip to main content


Search for: All records

Creators/Authors contains: "Raff, Edward"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Over the past decade, the machine learning security community has developed a myriad of defenses for evasion attacks. An under- studied question in that community is: for whom do these defenses defend? This work considers common approaches to defending learned systems and how security defenses result in performance inequities across different sub-populations. We outline appropriate parity metrics for analysis and begin to answer this question through empirical results of the fairness implications of machine learning security methods. We find that many methods that have been proposed can cause direct harm, like false rejection and unequal benefits from robustness training. The framework we propose for measuring defense equality can be applied to robustly trained models, preprocessing-based defenses, and rejection methods. We identify a set of datasets with a user-centered application and a reasonable computational cost suitable for case studies in measuring the equality of defenses. In our case study of speech command recognition, we show how such adversarial training and augmentation have non-equal but complex protections for social subgroups across gender, accent, and age in relation to user coverage. We present a comparison of equality between two rejection-based de- fenses: randomized smoothing and neural rejection, finding randomized smoothing more equitable due to the sampling mechanism for minority groups. This represents the first work examining the disparity in the adversarial robustness in the speech domain and the fairness evaluation of rejection-based defenses. 
    more » « less
    Free, publicly-accessible full text available November 30, 2024
  2. Many metric learning tasks, such as triplet learning, nearest neighbor retrieval, and visualization, are treated primarily as embedding tasks where the ultimate metric is some variant of the Euclidean distance (e.g., cosine or Mahalanobis), and the algorithm must learn to embed points into the pre-chosen space. The study of non-Euclidean geometries is often not explored, which we believe is due to a lack of tools for learning non-Euclidean measures of distance. Recent work has shown that Bregman divergences can be learned from data, opening a promising approach to learning asymmetric distances. We propose a new approach to learning arbitrary Bergman divergences in a differentiable manner via input convex neural networks and show that it overcomes significant limitations of previous works. We also demonstrate that our method more faithfully learns divergences over a set of both new and previously studied tasks, including asymmetric regression, ranking, and clustering. Our tests further extend to known asymmetric, but non-Bregman tasks, where our method still performs competitively despite misspecification, showing the general utility of our approach for asymmetric learning. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  3. Learning to understand grounded language, which connects natural language to percepts, is a critical research area. Prior work in grounded language acquisition has focused primarily on textual inputs. In this work, we demonstrate the feasibility of performing grounded language acquisition on paired visual percepts and raw speech inputs. This will allow interactions in which language about novel tasks and environments is learned from end-users, reducing dependence on textual inputs and potentially mitigating the effects of demographic bias found in widely available speech recognition systems. We leverage recent work in self-supervised speech representation models and show that learned representations of speech can make language grounding systems more inclusive towards specific groups while maintaining or even increasing general performance. 
    more » « less
  4. Learning to understand grounded language, which connects natural language to percepts, is a critical research area. Prior work in grounded language acquisition has focused primarily on textual inputs. In this work, we demonstrate the feasibility of performing grounded language acquisition on paired visual percepts and raw speech inputs. This will allow interactions in which language about novel tasks and environments is learned from end-users, reducing dependence on textual inputs and potentially mitigating the effects of demographic bias found in widely available speech recognition systems. We leverage recent work in self-supervised speech representation models and show that learned representations of speech can make language grounding systems more inclusive towards specific groups while maintaining or even increasing general performance. 
    more » « less
  5. Grounded language acquisition is a major area of research combining aspects of natural language processing, computer vision, and signal processing, compounded by domain issues requiring sample efficiency and other deployment constraints. In this work, we present a multimodal dataset of RGB+depth objects with spoken as well as textual descriptions. We analyze the differences between the two types of descriptive language and our experiments demonstrate that the different modalities affect learning. This will enable researchers studying the intersection of robotics, NLP, and HCI to better investigate how the multiple modalities of image, depth, text, speech, and transcription interact, as well as how differences in the vernacular of these modalities impact results. 
    more » « less
  6. Grounded language acquisition is a major area of research combining aspects of natural language processing, computer vision, and signal processing, compounded by domain issues requiring sample efficiency and other deployment constraints. In this work, we present a multimodal dataset of RGB+depth objects with spoken as well as textual descriptions. We analyze the differences between the two types of descriptive language and our experiments demonstrate that the different modalities affect learning. This will enable researchers studying the intersection of robotics, NLP, and HCI to better investigate how the multiple modalities of image, depth, text, speech, and transcription interact, as well as how differences in the vernacular of these modalities impact results. 
    more » « less
  7. We propose a cross-modality manifold alignment procedure that leverages triplet loss to jointly learn consistent, multi-modal embeddings of language-based concepts of real-world items. Our approach learns these embeddings by sampling triples of anchor, positive, and negative data points from RGB-depth images and their natural language descriptions. We show that our approach can benefit from, but does not require, post-processing steps such as Procrustes analysis, in contrast to some of our baselines which require it for reasonable performance. We demonstrate the effectiveness of our approach on two datasets commonly used to develop robotic-based grounded language learning systems, where our approach outperforms four baselines, including a state-of-the-art approach, across five evaluation metrics. 
    more » « less